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Abstract
The main processes involved in the mathematical and numerical modelling
of high-electron-mobility transistors are presented. The governing equations
must be solved rapidly and accurately for the simulation to be of use in CAD
(computer-aided design) packages. New analytic approximations are derived
for certain integrals which arise in the simulation, enabling these integrals to
be calculated rapidly. Results produced in this way are compared with those
produced using earlier less accurate approximations.

1. Introduction

Mathematical and numerical modelling plays a vital role in the design and manufacture of
new microwave devices. It is a modeller’s goal to produce fast and accurate solutions of
the modelling equations for use in CAD packages. In this paper we will concentrate on the
problem of evaluating certain integrals encountered in the modelling of the high-electron-
mobility transistor (HEMT), and present new ways of rapidly and accurately evaluating these
integrals.

The HEMT is a multilayer device with three contacts—the ohmic source, Schottky gate
and ohmic drain. Figure 1 shows a device cross-section in the x–y plane, and illustrates a
typical eight-layer device consisting of layers of gallium arsenide (GaAs), aluminium gallium
arsenide (AlGaAs) and indium gallium arsenide (InGaAs). The length of the gate is usually
in the range of 0.1 µm to 1.0 µm while the thickness in the y-direction (across the layer
structure) is usually of the range of 0.1 µm to 0.5 µm. The depth in the z-direction is normally
in the range 10 µm through to 1 mm, and this comparatively large size very often enables a
two-dimensional solution to suffice. Higher operating frequencies are produced by shorter-
gate-length devices. Voltages Vs and Vd on the source and drain cause a current to flow through
the device, and this current is modulated by varying the voltage Vg on the gate; this causes
greater or lesser depletion of the charge carriers around the gate leading to a narrowing or
widening of the conduction channel through which the charge carriers pass.

In the HEMT, the electron current dominates and it is normal to consider only electron
transport through the device (the unipolar model). Fast operation of the HEMT device is
achieved when excess carrier electrons are generated in the AlGaAs and fall into the potential
wells formed at the layer interfaces. Here they suffer fewer collisions with lattice sites and
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Figure 1. A schematic cross-section of a four-layer device.

move rapidly through the device. These potential wells cause the energies allowed to the
electrons to be quantized, and the quantum solution greatly adds to the cost of producing
numerical results.

The modelling of such a system can be done in several ways. In the equivalent-circuit
method [1] used in many CAD packages the characteristics of the device are modelled by
constructing an equivalent electrical circuit mimicking the electrical responses at the device
terminals. However, these characteristics depend crucially on the geometry of the device
and on the underlying solid-state processes, and the equivalent circuit method is not capable
of adequately taking these subtleties into account. In the Monte Carlo simulation technique
[2, 3] the trajectories of all the electrons in the device are followed when the electronic band
structure and scattering rates are given. The electron density in the device can be typically
of the order of 1023 m−3, and although this approach allows a powerful insight into device
operation it is extremely expensive in computing terms. The method used in this paper will
be that of semiclassical modelling in which the Poisson equation together with the first three
moments of the Boltzmann transport equation provide partial differential equations [4–9].
These equations contain coefficients such as mobility and relaxation times whose dependence
on particle energy are assumed known from Monte Carlo simulations performed previously
(often in a semiclassical environment). The modelling of the HEMT requires the addition of
the Schrödinger equation from quantum mechanics for a self-consistent solution to account for
quantization of electrons in the exceptionally thin layer structure [10]. As detailed below, the
integrals whose evaluation is the theme of this paper occur in the link between the quantized
solutions and the expression for the electron density.

2. The semiclassical modelling equations

It is normal to take a two-dimensional model in which the length in the z-direction is large
enough for changes in that direction to be neglected. The physical quantities which provide
a description of the processes are the electrostatic potential ψ(x, y), the electron density



Integral evaluation in the modelling of high-electron-mobility transistors 517

n(x, y) and the electron temperature T (x, y). All three quantities depend on position and
time, while the lattice temperature T0 is assumed for simplicity to be a constant value in this
work. The equations and associated boundary conditions used in the semiclassical method
are the Poisson equation, electron continuity equation, the energy transport equation and the
Schrödinger equation. The second and third of these will not be detailed here, but have been
described fully elsewhere [7, 10]. The Poisson equation is

∇ · (ε0εr ∇ψ) = −q(ND − n) (2.1)

where q = 1.6×10−19 C is the magnitude of the electron charge, ε0 and εr are the permittivities
of the vacuum and the material, respectively, and ND is the layer-dependent doping density of
the material which is fixed in the manufacturing process. The electric field is E = −∇ψ .

Since potential wells are formed near the AlGaAs–GaAs–InGaAs interfaces, we must also
solve the Schrödinger equation in a self-consistent manner along with the equations of current
continuity, energy transport and Poisson. The offset band structure between the different layers
is shown in figure 2, and the step Eh depends on the mole fraction u of Al or In in the AlGaAs
or InGaAs. The Schrödinger equation which must be solved is

− h̄2

2
∇ ·

(
1

m∗ ∇ξi

)
+ (Vxc + Eh − qψ)ξi = qλiξi (2.2)

where h̄ is the reduced Planck constant, and ξi and λi (i = 0, 1, . . .) are the energy
eigenfunctions and eigenvalues respectively. The effective mass m∗ is a function of position,
and the form of the kinetic energy operator in equation (2.2) is taken to reflect the fact that
it is a Hermitian operator. The quantity Vxc is the exchange correlation energy which is a
function of position and electron density n [10]. In terms of the fraction u of Al in the AlGaAs,
we take [13] the effective electron mass m∗ as m∗ = (0.067 + 0.083u)me where me is the
constant electron mass, Eh = 0.65(1.155u − 0.37u2) and the permittivity of the material as
εr = 13.18 − 3.12u. Similar results hold for InGaAs.

Figure 2. The band offset structure of different layers.

The process of obtaining the full two-dimensional solution of the Schrödinger equation
for the eigenfunctions and eigenvalues is very time consuming. It is therefore usual to solve
the equation in one-dimensional slices perpendicular to the layer structure, and to impose the
boundary conditions ξi(y = 0) = ξi(y = Y ) = 0 (i = 0, 1, . . .) on the eigenfunctions. This
is also justifiable since there is little or no quantization in the x-direction. In order to solve this
equation the electrostatic potentialψ must be calculated from the Poisson equation (2.1) whose
right-hand side requires the electron density n to be calculated. This is given as n = n2 + n3

where n2 is the contribution from the sub-bands given by the Schrödinger equation and n3

is the contribution from the bulk electron density. Specifically, outside the potential well we
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have n2 = 0 and

n3 = Nc3F1/2

(
q

kBT
(EF − Ec)

)
(2.3)

where

Nc3 ≡ 2

(
m∗kBT
2πh̄2

)3/2

and EF is the Fermi level and EC the conduction band minimum. The Fermi integral Fr is
defined in equation (3.2). Inside the potential well we calculate the discrete energy levels up
to some position-dependent well-top energy Etop and take

n2 = Nc2

∑
λj�Etop

|ξj (y)|2 ln

(
1 + exp

(
q

kT
(EF − λj )

))
(2.4)

where

Nc2 ≡ m∗kT
πh̄2

and

n3 = 1

2
π

(
8m∗

4π2h̄2

)3/2

q3/2
∫ ∞

Etop

(E − Ec)
1/2

1 + exp([q/(kBT )](E − EF ))
dE. (2.5)

Here the extreme non-linearity of the problem becomes apparent; the solution ψ of the
Poisson equation requires an expression for n on the right-hand side, n itself is calculated
from the eigensolutions of the Schrödinger equation and these are solved using a potential
which depends on ψ . One problem at this stage is to define what is meant by the top of
the potential well specified by the energy Etop. One approach [14] has been to calculate the
energy eigenvalues until the difference between consecutive values falls below the thermal
energy kBT /q. However, this may not be adequate for some complex well structures in which
the energy eigenvalues lie in close pairs. This fact is illustrated in table 2 (see later) for the
results of the first ten eigenvalues of the simulation. The numerical solution of the Schrödinger
equation also adds considerably to the computational effort of the problem, and the solution
scheme should aim to compute only a relatively small number of eigensolutions. It is therefore
desirable to take a value ofEtop which is as small as possible, since a larger value would require
the calculation of more eigensolutions for use in the expression (2.4) for n2. When the value of
Etop (or rather, the number of eigensolutions to be used) has been chosen, the conduction band
minimum Ec is then taken as max(Eh − ψ,Etop). The Fermi energy EF has been introduced
in equations (2.3) and (2.4), and in order to avoid having to calculate EF by inverting these
equations we use ψ , EF and T as the dependent variables. Appropriate boundary conditions
can be calculated for EF in terms of those already used for ψ , n and T .

The coding of the Fermi integral in equation (2.3) is straightforward using good analytic
approximations [15], but the coding of the integral in equation (2.5) presents difficulty. It
is desirable to have an analytic expression for this integral so that derivatives for use in the
elements of the Jacobian matrix which is used in Newton iteration may be evaluated easily. In
the next section we develop analytic approximations for this integral and similar ones which
allow for their rapid calculation. These integrals will be of the general form

Ir(a, b) ≡ 1

,(r + 1)

∫ ∞

0

(x + b)r

1 + ex−a
dx (2.6)

where

,(r + 1) ≡
∫ ∞

0
xre−x dx.
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In terms of these integrals, equation (2.5) can be written as

n3 = Nc3I1/2

(
q

kBT
(EF − Etop),

q

kBT
(Etop − Ec)

)
(2.7)

while the corresponding expressions for the energy density in the full non-degenerate case can
be shown outside the quantum wells to be

W2 = 0 W3 = 3

2
Nc3kBT F3/2

(
q

kBT
(EF − Ec)

)
(2.8)

and inside the wells to be

W2 = Nc2kBT
∑

λj�Etop

|ξj (y)|2I1

(
q

kBT
(EF − λj ),

q

kBT
(λj − Ec)

)
(2.9)

W3 = 3

2
Nc3kBT I3/2

(
q

kBT
(EF − Etop),

q

kBT
(Etop − Ec)

)
. (2.10)

Thus we see that analytic approximations are needed at least for the integrals I1/2, I1 and I3/2.
A crude approximation to these integrals [14] in which the second arguments of the Ir -integrals
are taken as zero (thereby producing simple Fermi integrals) produces errors, and these errors
are quantified in the results which follow.

3. The integrals and their approximations

On making the substitution x → x − b, the integral defined in equation (2.6) can be written as

Ir(a, b) ≡ 1

,(r + 1)

∫ ∞

b

xr

1 + ex−(a+b)
dx. (3.1)

The standard Fermi integral has the form

Fr(a) ≡ 1

,(r + 1)

∫ ∞

0

xr

1 + ex−a
dx (3.2)

and has the properties

F ′
r (a) = Fr−1(a) Fr(a) → ea for a 
 0.

This last condition is the condition for non-degeneracy, and the replacement of Fermi
integrals with exponential functions which are independent of r makes the non-degenerate
approximation much easier to use.

The integrals Ir(a, b) have the properties

Ir(a, 0) = Fr(a)

I0(a, b) = F0(a) = ln(1 + ea)

I1(a, b) = F1(a) + b ln(1 + ea)

In(a, b) = Fn(a) + b

n∑
r=1

1

r!
br−1Fn−r (a) n integer � 1 (3.3)

∂

∂b
Ir(a, b) = Ir−1(a, b) (3.4)

∂

∂a
Ir(a, b) = 1

,(r + 1)

br

1 + e−a
+ Ir−1(a, b). (3.5)

Clearly there is no problem in obtaining expressions for the Ir(a, b) when r is an integer,
because equation (3.3) shows that it may be written in terms of the Fermi integrals Fr(a)
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which are easily calculated using the approximations of Bednarczyk and Bednarczyk [15].
However, an approximation is needed for the 1

2 -integral values of r .
In order to approximate these integrals, define the function cr(a, b) such that

Ir(a, b) = Fr(a) + cr(a, b) ln(1 + ea). (3.6)

Since the Fr(a) are easily calculated, the I -integrals are easily evaluated if a simple analytical
approximation can be found for the cr(a, b). In order to do this, look for an approximation in
the form

cr(a, b) ≈ bpr (αr + βra) (3.7)

for some constants pr , αr and βr . The I -integrals are used with arguments a and b given in
equations (2.7)–(2.10), and for a typical HEMT these arguments have values typically in the
ranges −8.0 � a � 8.0 and 0 � b � 8.0. We therefore divide the rectangle defined by these
ranges into a grid G of points and evaluate the integrals directly at each point. The values of
pr , αr and βr are then found which minimize the sum of squares

∑
(a,b)εG

(
Ir(a, b) − Fr(a)

ln(1 + ea)
− bpr (αr + βra)

)2

.

The quantities pr , αr and βr are searched for over suitable ranges which can be lengthened if it
is found that the minimum sum of squares falls at the end of an initially chosen range. Table 1
shows the values of pr , αr and βr calculated in this way for several values of r . In calculating
these results, grid G was taken with 20 × 20 points and values were searched for in the ranges

0 < pr < 2r 0 � αr � 3.0 − 1.0 � βr � 1.0.

Table 1 also shows the average relative error( ∑
(a,b)εG

|Ir(a, b) − Fr(a) − bpr (αr + βra) ln(1 + ea)|
)/( ∑

(a,b)εG

|Ir(a, b)|
)

in the I -integral over the chosen range. The form of this relative error is taken to give greater
weight to larger values of the integral since these larger values contribute most to the values of
n3 andW3. It must be stressed that the approximations to the I -integrals obtained in this way do
not have the level of global accuracy associated with the approximations to the Fermi integrals
of Bednarczyk and Bednarczyk, and are appropriate only to the ranges of a and b given above.
For other ranges of a and b, the quantities in the table will need to be re-calculated.

Table 1. Calculated values of pr , αr , βr and the average relative error for various values of r .

r pr αr βr Error

−1/2 0.2154 −0.3860 0.0294 0.1345
1/2 0.6968 0.5138 −0.0112 0.0193
3/2 1.2937 1.4202 0.0279 0.0348
2 1.5564 1.8126 0.0681 0.0735
5/2 1.8109 2.1184 0.1156 0.1141

With the function cr(a, b) approximated by expression (3.7) and using the calculated
values of the parameters, the integrals Ir(a, b) can rapidly be calculated using equation (3.6).
The derivatives needed for use in the Jacobian of the Newton iteration scheme could themselves
be found using equations (3.4) and (3.5) although a better convergence of the Newton scheme
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will be produced by differentiating equations (3.6) directly:

∂

∂a
Ir(a, b) = Fr−1(a) + βrb

pr ln(1 + ea) +
cr(a, b)

1 + e−a
(3.8)

∂

∂b
Ir(a, b) = pr

b
cr(a, b) ln(1 + ea). (3.9)

Finally, writing

a ≡ q

kBT
(EF − Ttop) b ≡ q

kBT
(Ttop − Ec)

the expressions (2.7) and (2.10) can be written as

n3 = Nc3F1/2(a) + n3corr

W3 = 3

2
Nc3kBT F3/2(a) + W3corr

where

n3corr = Nc3c1/2(a, b) ln(1 + ea) (3.10)

W3corr = 3

2
Nc3kBT c3/2(a, b) ln(1 + ea) (3.11)

are correction terms to be added to the uncorrected expressions previously used [14].

4. One-dimensional simulation and results

It is not necessary to include current and energy transport across the device in order to illustrate
the effectiveness of the integral approximations, since the Poisson and Schrödinger equations
alone are closely linked by the expressions for n2 and n3. Consequently, this effectiveness may
be demonstrated by using a one-dimensional simulation (taken in the y-direction) in which
the Poisson and Schrödinger equations are solved self-consistently. The boundary conditions
for this one-dimensional simulation will be the same as for a slice through the gate of the two-
dimensional model. This model has been considered previously [10] but without the correction
terms included. Specifically, we will solve equations (2.1) and (2.2) with the electron densities
calculated using equations (2.3), (2.4) and (2.7). For completeness, the energy densities will
be calculated from equations (2.8)–(2.10), although only an isothermal model with T = 300 K
will be considered.

A four-layer AlGaAs–GaAs–AlGaAs–GaAs device will be considered. With the layers
numbered from the gate end of the device at y = 0, the aluminium fractions u in layers 1–4
are taken as 0.3, 0.0, 0.3 and 0.0 respectively, and the doping density ND is 1.5 × 1024 m−3,
1.0 × 1020 m−3, 1.5 × 1024 m−3 and 1.0 × 1020 m−3. The thicknesses of the layers 1–4 are
30 nm, 20 nm, 20 nm and 100 nm.

The Poisson equation was solved using a multigrid method [10] and the Schrödinger
equation was solved at each level to provide updated values for the electron density n. The
eigenvalues λi were found from the Schrödinger equation using a QL algorithm with implicit
shifts and then ordered, with the first few eigenfunctions ξi found using back substitution.
These eigensolutions were used in the calculation of n2 using equation (2.4). Table 2 shows
the first ten eigenvalues and the differences between each and its preceding value, although
only three were used in the calculation of the electron density. Differences which fall below
the thermal energy kBT /q are marked with an asterisk, and indicate that it is not satisfactory
to stop calculating eigensolutions when the difference is small in this way. Figure 3 shows a
plot of the calculated well structure, with the first three eigenvalues superimposed on the plot
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Table 2. The first ten eigenvalues and the difference between each and its preceding value. An
asterisk indicates a difference that falls below the thermal energy kBT /q, which has the value
2.585 × 10−2 eV at T = 300 K.

Solution Eigenvalue (10−2 eV) Difference (10−2 eV)

0 −2.689
1 −1.809 0.880∗

2 −0.5214 1.288∗

3 2.793 3.314
4 4.284 1.491∗

5 5.277 0.993∗

6 6.943 1.665∗

7 8.143 1.200∗

8 9.026 0.883∗

9 9.664 0.639∗

Figure 3. A plot of the conduction band Ec and the first three eigenvalues.

of the conduction band Ec = Eh − ψ . Figure 4 shows the plot of the total electron density
n = n2 +n3 together with a plot of the correction term n3corr of equation (3.10). This indicates
that a cruder calculation based on replacing the integral I1/2(a, b) by F1/2(a) would produce
an electron density reduced by this substantial correction. Figure 5 gives a corresponding
comparison for the energy density W = W2 + W3 together with a plot of the correction term
W3corr of equation (3.11). Again, a substantial correction is present.

5. Discussion

The equations modelling the HEMT have been presented. The layer structure of the HEMT is
designed to achieve rapid transport of the charge carriers through the device, but this introduces
the extra complication of having to solve the Schrödinger equation. The solutions of this
equation are used to calculate the electron density by using certain integrals. We have sought
to write these integrals in terms of the function cr(a, b) for which analytic approximations
have been derived.
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Figure 4. Plots of the total electron density n (solid line) and its correction.

Figure 5. Plots of the total energy density W (solid line) and its correction.

The approximations to the function cr(a, b) derived here do not have the global status of
existing approximations to the Fermi integrals [15]. The values of the parameters pr , αr and
βr are derived for ranges of a and b which are applicable to the device considered, although
the ranges used here are applicable to the HEMT device in general. If required, it would be
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a simple matter to do an automatic re-calculation of the ranges, and hence the parameters, at
some intermediate breakpoint in the Newton iteration.

A one-dimensional example of a device with four layers has been used to produce results
which indicate the effect of including the correction factor in the calculations. It is sufficient
to take a one-dimensional calculation without current and energy transport to show this effect
because there is a natural pairing of the Poisson and Schrödinger equations in the model.

Table 2 shows the first ten eigenvalues and the difference between each and its preceding
value. An asterisk indicates when a difference falls below the thermal energy kBT /q. This
shows that previous methods [14] of stopping the eigensolution calculation when the difference
falls below that of the thermal energy are not satisfactory, because the eigenvalues of a multiple-
well structure can fall together into very close pairs. Greater accuracy is obviously achieved
by using a greater number of eigensolutions but this greatly adds to the computational cost.
An indication of the accuracy achieved by taking different numbers of eigensolutions has been
given elsewhere [10], although to build an implementation based on this accuracy testing would
again greatly increase the computational cost. In order to produce results showing the effect
of this correction factor, we have used a fixed arbitrary number (three) of these eigensolutions.

Results shown in figures 4 and 5 indicate that the presence of the correction factor produces
appreciable contributions to both the electron density and energy density.

In this paper we have sought to produce analytic approximations to the integrals in order
to increase the speed of the numerical implementation consistent with accuracy. As indicated
in preliminary investigations [10], this increase should be achieved by being able to take a
smaller number of eigensolutions in the calculation of n2 and W2. However, we have not
sought here to demonstrate how this speed-up will affect the overall efficiency of a complete
CAD programme nor how the validity of the analytical approximations applies to different
HEMTs; these important considerations will be the subject of further communications.
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